Sector News

New catalyst makes styrene manufacturing cheaper, greener

March 6, 2021
Energy & Chemical Value Chain

Chemical engineering researchers have developed a new catalyst that significantly increases yield in styrene manufacturing, while simultaneously reducing energy use and greenhouse gas emissions.

“Styrene is a synthetic chemical that is used to make a variety of plastics, resins and other materials,” says Fanxing Li, corresponding author of the work and Alcoa Professor of Chemical Engineering at North Carolina State University. “Because it is in such widespread use, we are pleased that we could develop a technology that is cost effective and will reduce the environmental impact of styrene manufacturing.” Industry estimates predict that manufacturers will be producing more than 33 million tons of styrene each year by 2023.

Conventional styrene production technologies have a single-pass yield of about 54%. In other words, for every 100 units of feedstock you put into the process, you would get 54 units of styrene out of each pass. Using their new catalyst, the researchers were able to achieve a single-pass yield of 91%.

The conversion process takes place at 500-600 degrees Celsius – the same temperature range as conventional styrene manufacturing processes. However, there is a big difference.

“Current techniques require injecting very large volumes of steam into the reactor where the conversion takes place,” says Yunfei Gao, a postdoctoral scholar at NC State and co-lead author of a paper on the work. “Our technique requires no steam. In practical terms, this drastically reduces the amount of energy needed to perform the conversion.”

Specifically, the conversion process that incorporates the new catalyst uses 82% less energy – and reduces carbon dioxide emissions by 79%.

“These advances are made possible by the engineered design of the catalyst itself,” says Xing Zhu, co-lead author of the paper and a researcher at the Kunming University of Science and Technology (KUST). “The new redox catalyst has a potassium ferrite surface for the catalytic phase and a mixed calcium manganese oxide core for lattice oxygen storage.” Zhu worked on the project as a visiting scholar at NC State.

“In order to adopt the new catalyst, styrene manufacturers would need to adopt a different style of reactor than they are currently using,” Li says. “They would need something similar to a CATOFIN® reactor. But those are already in widespread use for other industrial applications. And the cost savings from the new process should be significant.”

by ChemEurope.com

Source: chemeurope.com

comments closed

Related News

July 21, 2024

PepsiCo and Yara partner to decarbonise European crop production

Energy & Chemical Value Chain

PepsiCo Europe and crop nutrition company Yara have announced a long-term partnership aimed at providing European farmers with low-carbon crop nutrition solutions to help decarbonise the food value chain. Under the agreement, Yara will supply PepsiCo with up to 165,000 tons of fertiliser per year by 2030, covering around 25% of the food and beverage giant’s crop fertiliser needs across Europe.

July 21, 2024

BASF sells Flocculants business for mining applications to Solenis

Energy & Chemical Value Chain

BASF has signed an agreement to sell its flocculants business for mining applications to Solenis, a specialty chemicals manufacturer. The divestment of the flocculants business to Solenis is part of BASF’s ongoing portfolio optimisation with the aim of focusing on strategic core areas.

July 21, 2024

ADAMA announces Gaël Hili as President and CEO replacing Steve Hawkins

Energy & Chemical Value Chain

ADAMA Ltd. a leading crop protection company, announced that its board of directors has appointed Gaël Hili as its President and Chief Executive Officer, effective October 1, 2024. Hili will join the Syngenta Group Leadership Team and will be based in Tel Aviv.

How can we help you?

We're easy to reach