Sector News

Research identifies possible link between antibiotic use and breast cancer growth

September 19, 2021
Life sciences

In a new study funded by Breast Cancer Now, scientists have identified a possible link between antibiotic use and the speed of breast cancer growth in mice.

In this study, the research team used a cocktail of five antibiotics, and the broad-spectrum antibiotic cefalexin on its own, to investigate how disrupting a healthy balance of bacteria in the gut impacted breast cancer growth in mice.

Researchers from the Quadram Institute and the University of East Anglia (UEA) discovered that treating mice with broad-spectrum antibiotics increased the rate at which their breast cancer tumours grew.

On top of that, they also identified an increase in the size of secondary tumours that grew in additional organs when the cancer spread.

According to the researchers, the use of antibiotics led to the loss of a beneficial bacterial species which resulted in the progression of tumour growth.

Further investigation led the team to discover a type of immune cell – known as mast cells – were found in larger numbers in breast cancer tumours in mice treated with antibiotics.

They also found that cromolyn, a substance that halts mast cells function, reduced tumour growth in the antibiotic-treated mice, but not in the control group.

‘This provides evidence that mast cells could be involved in the faster growth of breast cancer that arises from antibiotic use,’ according to the researchers.

Following their discoveries, the researchers will investigate further in the hopes of understanding where the increase of mast cells comes from and why disrupting gut bacteria causes an increase in this immune cell.

“Our research has shown that losing “good” bacteria in the gut, as the result of antibiotic use, can lead to an increased rate of breast cancer growth,” said Stephen Robinson, group leader at the Quadram Institute and research leader at UEA.

“We believe there is a complex immune element to this mechanism involving mast cells, a type of cell whose role in many cancers is not yet fully understood. Therefore, future studies will focus on understanding the possible role of these cells as well as looking into the effects of introducing probiotics into the experimental models we use,” he added.

by Lucy Parsons

Source: pharmatimes.com

comments closed

Related News

October 23, 2021

Novo Nordisk teams with CVS Health on obesity support program ahead of Wegovy DTC launch

Life sciences

As Novo Nordisk gears up to disrupt the obesity market with its newly approved weight-loss drug Wegovy, it is teaming with retail pharmacy giant CVS Health on a new education and nutrition coaching program for people taking anti-obesity meds.

October 23, 2021

GSK-backed Atreca inks license with Gates Medical Research Institute for malaria monoclonal antibody

Life sciences

The terms of the deal were undisclosed, but Atreca received $6 million from the Gates Foundation in 2012 to discover potential treatments for malaria, tuberculosis and HIV. The foundation has also given grant money to other biopharmas exploring malaria treatments, including Exscientia, which secured $4.2 million last year for such work.

October 23, 2021

A record number of biotechs are going public. Here’s how they’re performing.

Life sciences

At the start of the last decade, the IPO markets weren’t receptive to biotech companies. But by 2013, public investment was pouring into the industry, drawn by scientific advances and boosted by the newfound interest of a broader range of investors. Ever since, biotechs and their backers have ridden a multi-year boom. Keep track of them as they happen with this database.

Send this to a friend