Sector News

Making drug-resistant bacteria susceptible to antibiotics

June 13, 2021
Life sciences

Antibiotic resistance remains one of the biggest public health challenges. While doctors are changing the way they use antibiotics to lower the risk of emerging resistance, new drugs are still needed to tackle tough-to-treat bacteria. But finding new therapeutics to kill off pathogenic bacteria has been difficult.

Scientists at the New York University (NYU) School of Medicine are pursuing a different strategy: They have uncovered an innate defense mechanism that protects bacteria from normally lethal doses of antibiotics, according to a new study published in Science.

By screening existing drug libraries, the researchers identified three candidates that could effectively cripple that bacterial defense system by inhibiting an enzyme called cystathionine gamma-lyase (CSE). The findings support the strategy of using a small-molecule potentiator to make bacteria more susceptible to antibiotics, the researchers suggested.

When exposed to antibiotics, some bacteria switch to a dormant state to survive in a process that’s mediated by the production of the molecule hydrogen sulfide (H2S). The NYU team previously showed that this mechanism is present in a wide variety of bacterial species, including Staphylococcus aureus and Pseudomonas aeruginosa, which have produced many multidrug-resistant strains. Previous studies have shown that genetic disruption of H2S could sensitize these pathogens to antibiotics and to the host immune response.

In the current study, the team first used mutants of S. aureus and P. aeruginosa to show that CSE is a critical source of H2S production. Deactivating CSE alone led to major reduction of H2S and was sufficient to sensitize the mutant strains to low doses of antibiotics, including gentamycin and ampicillin, the team found.

The researchers figured CSE could be targeted by drugs designed to make bacteria susceptible to antibiotics. But existing inhibitors of CSE showed very low activity against bacterial CSE. So the team went on to identify drugs that are more efficient at blocking bacterial CSE.

After identifying a possible bacterial CSE site that could be bound by drugs without causing toxic effects, the team screened about 3.2 million small molecules and selected three lead compounds, NL1, NL2 and NL3. In lab dishes, all three drugs showed a strong inhibitory effect on H2S production by both S. aureus and P. aeruginosa and enhanced the effect of antibiotics from different classes.

The team further tested NL1 in two mouse models of infection. In a mouse model of S. aureus sepsis, combining NL1 with gentamycin helped 50% of mice survive the challenge, whereas 90% of the control animals died. Neither NL1 nor gentamycin alone increased survival, the researchers reported.

In mice with lung infections caused by P. aeruginosa, the combo markedly decreased the bacterial burden, while no significant change was observed with solo NL1 or antibiotic.

Further analysis showed that NL1 significantly reduced the number of bacteria “persisters”—bugs that stopped multiplying and reduced energy use to survive antibiotic treatment—at a similar level as did genetic inactivation of CSE. It also disrupted the formation of biofilms, which are bacterial colonies that live in tough-to-reach matrices.

Most research aiming to combat the problem of antibiotic resistance focuses on developing new classes of antibiotics. Scientists at the University of Pennsylvania, for example, modified a peptide called mastoparan-L from the venom of Korean yellow-jacket wasp that can kill bacteria without causing harm to humans.

A team led by scientists at the University of California, Los Angeles (UCLA) recently took inspirations from proteins that P. aeruginosa produces to kill competing bacteria. UCLA spinoff Pylum Biosciences is designing new antibiotics based on those proteins, called R-type pyocins.

The NYU researchers behind the new study believe that suppressing bacterial H2S by inhibiting CSE could represent a new approach to bolstering the effect of existing antibiotics.

“Interfering with the H2S-based defenses represents a largely unexplored alternative to the traditional antibiotic discovery,” Evgeny Nudler, Ph.D., the study’s corresponding author, said in a statement. “Our results suggest that a new kind of small molecule potentiator can strengthen the effect of major classes of clinically important antibiotics.”

by Angus Liu

Source: fiercebiotech.com

comments closed

Related News

April 20, 2024

CureVac and MD Anderson Cancer Center partner to develop new cancer vaccines

Life sciences

CureVac and the University of Texas’s MD Anderson Cancer Center have announced a co-development and licensing agreement to develop novel messenger ribonucleic acid (mRNA)-based cancer vaccines. The strategic collaboration will focus on the development of differentiated cancer vaccine candidates in selected haematological and solid tumour indications with high unmet medical needs.

April 20, 2024

FUJIFILM plans $1.2 billion investment in major US manufacturing facility

Life sciences

FUJIFILM Corporation is planning to invest $1.2 billion to expand the planned FUJIFILM Diosynth Biotechnologies manufacturing facility in Holly Springs, North Carolina, US. This news follows the organisation’s announcement of a $2 billion investment in the facility in March 2021. This additional financial boost totals the investment to over $3.2 billion, FUJIFILM confirmed.

April 20, 2024

Sanofi cuts staff in Belgium as early-stage research dwindles

Life sciences

Sanofi’s global restructuring and downsizing is now fully underway, with layoffs stretching to the company’s Belgian offices. Belgian newspaper De Tijd reports that 67 employees have been laid off at a site in Ghent and 32 jobs are on the chopping block at Sanofi’s Belgium HQ in Diegem.

How can we help you?

We're easy to reach