Sector News

Upcycling promises to pare plastics pollution

May 6, 2019
Chemical Value Chain

A method of plastics upcycling — transforming discarded products into new, high-value materials of better quality and environmental value — could economically incentivize waste plastic recycling and help solve a major pollution problem, say researchers at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL), Lakewood, Colo.

According to an article in Joule, the NREL team combined reclaimed polyethylene terephthalate (PET), in the form of single-use beverage bottles, with bio-based compounds such as muconic acid to produce higher-value fiber-reinforced plastics (FRPs). Not only are the resulting composites worth more than double the original PET, but the FRPs also exhibit twice the strength and improved adhesion to fiberglass compared to standard petroleum-derived FRP, claim the researchers.

“Knowing that 26 million tons of PET are produced each year but only 30% of PET bottles are recycled in the United States, our findings represent a significant advancement in enabling the circular materials economy,” notes NREL’s Gregg Beckham, one of the primary authors of the paper.

The process also is more energy efficient and less hazardous than standard manufacturing processes for petroleum-based FRPs, says the team. A supply-chain analysis of the FRP materials found substantial energy savings and greenhouse gas emission reductions when compared to the process for producing petroleum-based composites.

The researchers are investigating several next steps. The first involves scaling up the process to make larger composite materials to test their performance for a wider variety of applications such as for use in wind turbines, car parts and other performance materials.

“The current composites are not inherently recyclable at the end of their (hopefully very long) lifetimes,” admits Beckham. So, NREL is investigating how to do the same type of work (combine bio-based building blocks with reclaimed plastics to upcycle them) while also including inherent recyclability at the end of life.

Exploring the effect of bio-based building blocks other than muconic acid in these material formulations is another area of focus.

The team also is doing similar upcycling work with polyethylene, polypropylene, nylons, and polyurethanes. “It is likely that we will have some exciting results on polyethylene coming soon,” hints Beckham.

Many challenges still exist, he acknowledges. “Most importantly, we need help from industry to scale up. We are starting to assemble key partners in this area now and are actively looking for industrial partners to collaborate with. We need to understand better what the lifetime performance and quality of these materials will be, and if these ideas are industrially viable in the first place,” he says.

Another major challenge is accessing bio-based building blocks at large scale. “Bioeconomy research and development tends to focus on scaling up production of molecules for which there is an immediate or near-term use, and for many building blocks, this is market driven. Today, it is difficult to access large quantities of muconic acid at the ton scale from a bio-based building block, but it’s possible that more easily accessible bio-based building blocks could lead to similar properties, and that’s why we’re both actively looking for industrial engagement and also researching additional compounds now at the bench scale,” explains Beckham.

“We are excited about the idea of combining bio-based building blocks with reclaimed, low-value waste plastics, and we think there is an exciting R&D future as well as potentially scalable solution for plastics upcycling in this direction,” he concludes.

Source: Chemical Processing

comments closed

Related News

September 19, 2021

SIG invests €12m in new pilot plant for Europe tech centre

Chemical Value Chain

Aseptic carton packaging manufacturer SIG has announced it is investing €12 million in a new pilot plant, which will be part of the company’s new Tech Center Europe. The pilot plant will offer modern extrusion and finishing technology, advanced quality measurement systems and testing equipment.

September 19, 2021

Partnership to commercially develop waste-to-methanol technology

Chemical Value Chain

Johnson Matthey has teamed up with waste-to-chemical technologies company MyRechemical to commercially develop waste-to-methanol technology, with the aim of contributing to sustainability.

September 19, 2021

Neste and Kinder Morgan to create U.S. storage and logistics hub for renewable-fuels feedstock 

Chemical Value Chain

Upon completion of the project, Kinder Morgan’s Harvey, Louisiana facility will serve as the primary hub where Neste will store a variety of raw materials including, for example, the used cooking oil it collects from more than 40,000 restaurants across the United States.

Send this to a friend