Sector News

New catalyst makes styrene manufacturing cheaper, greener

March 6, 2021
Chemical Value Chain

Chemical engineering researchers have developed a new catalyst that significantly increases yield in styrene manufacturing, while simultaneously reducing energy use and greenhouse gas emissions.

“Styrene is a synthetic chemical that is used to make a variety of plastics, resins and other materials,” says Fanxing Li, corresponding author of the work and Alcoa Professor of Chemical Engineering at North Carolina State University. “Because it is in such widespread use, we are pleased that we could develop a technology that is cost effective and will reduce the environmental impact of styrene manufacturing.” Industry estimates predict that manufacturers will be producing more than 33 million tons of styrene each year by 2023.

Conventional styrene production technologies have a single-pass yield of about 54%. In other words, for every 100 units of feedstock you put into the process, you would get 54 units of styrene out of each pass. Using their new catalyst, the researchers were able to achieve a single-pass yield of 91%.

The conversion process takes place at 500-600 degrees Celsius – the same temperature range as conventional styrene manufacturing processes. However, there is a big difference.

“Current techniques require injecting very large volumes of steam into the reactor where the conversion takes place,” says Yunfei Gao, a postdoctoral scholar at NC State and co-lead author of a paper on the work. “Our technique requires no steam. In practical terms, this drastically reduces the amount of energy needed to perform the conversion.”

Specifically, the conversion process that incorporates the new catalyst uses 82% less energy – and reduces carbon dioxide emissions by 79%.

“These advances are made possible by the engineered design of the catalyst itself,” says Xing Zhu, co-lead author of the paper and a researcher at the Kunming University of Science and Technology (KUST). “The new redox catalyst has a potassium ferrite surface for the catalytic phase and a mixed calcium manganese oxide core for lattice oxygen storage.” Zhu worked on the project as a visiting scholar at NC State.

“In order to adopt the new catalyst, styrene manufacturers would need to adopt a different style of reactor than they are currently using,” Li says. “They would need something similar to a CATOFIN® reactor. But those are already in widespread use for other industrial applications. And the cost savings from the new process should be significant.”

by ChemEurope.com

Source: chemeurope.com

comments closed

Related News

June 24, 2022

BASF to build commercial scale battery recycling black mass plant in Schwarzheide, Germany

Chemical Value Chain

BASF will build a commercial scale battery recycling black mass plant in Schwarzheide, Germany. This investment strengthens BASF’s cathode active materials (CAM) production and recycling hub in Schwarzheide. The site is an ideal location for the build-up of battery recycling activities given the presence of many EV car manufacturers and cell producers in Central Europe.

June 24, 2022

Clariant restructures business units, reorganizes leadership

Chemical Value Chain

Clariant says it is reducing its number of businesses from five to three, by merging units, under a reorganization that is in line with the company’s purpose-led strategy and cultural transformation. The moves will position Clariant for long-term sustainable growth, the company says.

June 24, 2022

Chemicals & Plastics Procurement: what to expect in the second half of 2022

Chemical Value Chain

Chemicals & plastics industry has the most diversified end-use market across all manufacturing industries. The industry returned to growth in 2021 but a supply chain crunch prevented it from becoming stronger. The market is likely to stabilize in the second half of 2022 with a supply-demand balance.