Sector News

Is hydrogen just oil and gas greenwashed?

July 31, 2021
Energy & Chemical Value Chain

The debate over the position of hydrogen in the new energy revolution has come to the fore again thanks to Japan’s hosting of the Olympic Games. The Olympic buses run on hydrogen, and even the Olympic Cauldron is a hydrogen flame. But rather than showcasing how green this miracle new fuel is, it has highlighted its many problems.

In the perfect hydrogen scenario, wind farms, solar panels, ebbing tides, waves and other intermittent renewable energy sources would be filling tanks with hydrogen whenever they can, to be used later when needed. It’s a valid argument when renewable energy is abundant because it can be much more variable than a fossil fuel or nuclear power plant that can be spun up when needed. But, in reality, this is not how the vast majority of hydrogen is produced.

Currently, around 95% of hydrogen production is what is called “grey”, including that being used at the Tokyo Olympics. It is made by reacting natural gas with high-temperature steam. This is the cheapest way to manufacture hydrogen but produces loads of CO2. In fact, it has been calculated that producing 1kg of hydrogen by this method will generate 9.3kg of CO2, which is actually more than the 9.1kg of CO2 produced by burning a gallon of gasoline, usually considered to have a similar energy value. Taking Toyota’s original Mirai as the benchmark, 1kg of hydrogen can provide about 60 miles of range. That equates to around 97g of CO2 per km, which is good but hardly zero emissions. It’s about the same as that produced by a Toyota Yaris hybrid.

Hydrogen evangelists will counter this by claiming that “in the future” renewables will take over, and in the interim, we have carbon capture producing “blue” hydrogen. But currently the amount of blue hydrogen being produced is infinitesimal (less than 1%) and well below expectations. It’s also highly problematic technology that remains unproven. In fact, Chevron recently admitted its failure at Australia’s only carbon capture and storage facility in Gorgon. Instead of storing 4 million tonnes of CO2 a year, it has managed to store 5 million tonnes in total since the project started in 2009.

Of course, you should consider the “well to wheel” emissions of each vehicle type and how much greenhouse gases are produced in manufacturing as well. There is no denying that battery-electric vehicles do create more emissions during production than conventional cars, particularly the batteries, at least for now while manufacturers look for ways to reduce this factor. Electricity supplies also vary greatly in CO2 emissions. But fossil fuel manufacturers have overstated this differential grossly, most famously in the “#AstonGate” controversy in the UK, which deliberately twisted a worst case scenario in an attempt to make fossil fuel cars somehow appear greener than BEVs.

More recent and comprehensive research by the International Council on Clean Transportation has shown that over their lifespan, BEVs produce far fewer greenhouse gas emissions than internal combustion, even in regions with highly polluting electricity grid energy sources such as China and India. This report also makes it clear that no car with an internal combustion engine, even a hybrid, will be sufficient to meet the goals of the Paris Agreement for greenhouse gas reduction. In other words, companies promoting “self-charging hybrids” over BEVs are threatening environmental disaster almost as much as those promoting traditional internal combustion without hybrid drivetrains.

Fuel cell cars could be a solution too. The International Council on Clean Transportation reports gives these as much potential to achieve Paris Agreement goals as BEVs. The problem is that their development is far behind BEVs, with FCEV prices much higher than equivalent BEVs, and the refuelling networks worse than electric charging networks were a decade ago. Even in Japan, the poster child of H2, those Olympic hydrogen buses have proven to be five times as expensive to buy and much less convenient to refuel than diesel buses. The fuel cost is also 2.6 times higher – and that is with grey hydrogen. Properly environmental green hydrogen is even more expensive.

So what is the pro-hydrogen lobby really all about? Clearly, Toyota has invested heavily in this technology and wants to get its money’s worth, particularly as its BEV strategy is so far behind the competition. The bZ4X looks great, and Toyota is even mooting ground-breaking solid state batteries. But let’s judge the bZ4X when we see it in production. The company is clearly trying to delay BEVs, as the New York Times reported recently, in an attempt not to lose market share now that Tesla has taken its crown as the most valuable car company in the world.

But this isn’t just a battle between car manufacturers. The fact is, while the visible discussions revolve around battery-electric versus fuel cell-electric vehicles, there is a much deeper conflict going on between energy businesses. If we all stop using fossil fuel vehicles we fill up at the local gas station and switch to BEVs that we charge at home, that’s a big problem for oil and gas companies with huge consumer fuel supply lines that haven’t invested in electrical infrastructure, and a big win for energy supply companies. Since 95% of current hydrogen is produced from fossil fuel, conversely its adoption would maintain the status quo for the oil and gas companies.

It’s no surprise, therefore, that disruptive new energy companies like the UK’s Octopus Energy are also developing electric car leasing such as its Octopus EV and charging consortiums such as its Octopus Electric Juice, both of which help promote BEV ownership. They complement the electricity supply business perfectly. This is another area where the “convenience” of hydrogen shows itself to be a myth. Sure, you can fill your car up in five minutes (that is, if you can find an H2 station at all). But how is that more convenient than leaving your house with a “full tank” in your BEV that you charged at home, every single day?

This is clearly a massive problem for oil and gas companies with a fuel delivery system based around forecourt destinations. In fact, while the climate emergency is an existential threat for human life as we know it, even planetary life, it’s also a disruptive opportunity for new business. It’s a chance for less polluting green energy suppliers to take over from dirty oil and gas that regularly causes environmental disasters like Deepwater Horizon. It’s a chance for new car companies like Tesla and smaller players such as Kia-Hyundai to win market share from decades-old incumbent automotive giants like Toyota.

Calling hydrogen oil and gas greenwashed is hyperbolic, and if you’ve read this far, please forgive the use of this phrase to get your attention. There are some clear places where hydrogen will be essential, such as cement and steel production. It could also come into its own if and when we get to a stage where renewable electricity production is abundant. But, for now, many of the companies pushing hydrogen aren’t doing so to save the planet. They’re doing so to save their business models in a time of extreme transition towards greener technologies and e-mobility. If we are to solve the climate crisis, we need to take their propaganda with a pinch of salt and opt for solutions that can actually deliver the emissions reductions we need in time.

by James Morris


comments closed

Related News

December 3, 2023

CF Industries completes acquisition of Waggaman ammonia production facility

Energy & Chemical Value Chain

CF Industries Holdings, Inc. (NYSE: CF) today announced that it has closed its acquisition of Incitec Pivot Limited’s (“IPL”) ammonia production complex located in Waggaman, Louisiana. Under the terms of the agreement, CF Industries purchased the Waggaman ammonia plant and related assets for $1.675 billion, subject to adjustments.

December 3, 2023

Virent and Johnson Matthey: behind the pioneering technology that enabled the first 100% SAF trans-atlantic flight

Energy & Chemical Value Chain

The Virgin Atlantic flight was powered entirely by SAF, that was a drop-in replacement for conventional jet fuel, but made solely from sustainable feedstocks. This was enabled through the inclusion of a new bio-based aromatic jet fuel blending component.

December 3, 2023

COP28: Cepsa, C2X eye €1B investment in green methanol plant at Huelva, Spain

Energy & Chemical Value Chain

Cepsa SA (Madrid) has agreed a deal with C2X, an independent firm owned by AP Moller Holding with AP Moller-Maersk as minority owner, to develop a 300,000 metric tons per year renewable methanol plant at Huelva, Spain.

How can we help you?

We're easy to reach